
1. GAUSSIAN ISOPERIMETRIC INEQUALITY

Always γm denotes the standard Gaussian measure on Rm, or on any vector space with a given inner
product (for example, if W is a k-dimensional subspace of Rm, we use γk for the Gaussian measure on W
with the inherited inner product).

Theorem 1 (Borell, Tsirelson-Ibragimov-Sudakov (1970s)). Let A be any Borel subset of Rm with γm(A) > 0 and
let H be a half-space in Rm with γm(H) = γm(A). Then γm(Aε) ≥ γm(Hε) for all ε > 0. If A is a closed set with
γm(A) > 0, then equality holds for some ε > 0 if and only if A is a half-space.

We present an honest and complete (hopefully!) proof of this theorem3. First, the one-dimensional case
as an exercise. We give a solution later, since Theorem 1 will be proved by induction on m.

Exercise 2. For any closed set A⊆R and any ε > 0, we have Φ−1(γ1(Aε))≥Φ−1(γ1(A))+ε. [Hint: Try proving
it for one interval and then a finite union of intervals. From there to closed sets may be omitted.]

Notation: For a unit vector u ∈ Rm and t ∈ R, define the closed half-space Hu(t) := {x : 〈x,u〉 ≤ t}. For a
closed subset A⊆ Rm, define

• M(A) := {B⊆ Rm : B is closed, γm(A) = γm(B),γm(Aε)≥ γm(Bε) for all ε > 0}.
• r(A) := inf{t ∈ R : A⊆ Hu(t) for some unit vector u}.

The set M[A] is the collection of all closed sets that are at least as good as A from the isoperimetry point of
view. The quantity r(A) will be of use in proofs. We now collect some basic facts about M[A] and r(A).

Lemma 3. Let C be the set of all closed subsets of Rm endowed with the Hausdorff metric d.

(1) The function A→ r(A) is continuous.

(2) The function A→ γm(A) is upper semicontinuous.

(3) If A is a closed subset of Rm with γm(A) > 0, then r(·) attains its minimum on M(A).

The main idea in proving Theorem 1 is a symmetrization procedure due to Antoine Ehrhard (analogous
to Steiner’s symmetrization for the classical isoperimetric inequality in Euclidean space) that takes a set and
produces another that is better in the isoperimetric sense.

Ehrhard’s symmetrization: Let ! be a one-dimensional affine subspace in Rm and let u ∈ !⊥ be a unit vector.
For any A⊆ Rm, define its symmetrization w.r.t. (!,u) as the subset B = S!,u[A] such that

(1) for any t ∈ !, the section B∩ (t + !⊥) is a half-space in t + !⊥ whose boundary is orthogonal to u,

(2) γm−1(B∩ (t + !⊥)) = γm−1(A∩ (t + !⊥)).

Here is a more explicit description of B. For each t ∈ R, find the unique a = at ∈ R∪ {±∞} such that
γm−1(Hu(a)∩ (t + !⊥)) = γm−1(A∩ (t + !⊥)) and set B =

S
t∈!(Hu(at)∩ (t + !⊥)).

As S!,u[A] is defined by an uncountable union of sections, it is not obvious that it is measurable, even for
a nice set A. The following lemma shows that any symmetrization transforms closed sets to closed sets, in
particular measurable.

Lemma 4. Let A be a closed set. Then S!,v[A] is also closed.

3Our proof is cobbled together from the paper of Ehrhard, Symétrisation de l’espace de Gauss and the appendix to the paper of Figiel,
Lindenstrauss and Milman, The dimension of almost spherical sections of convex bodies. The symmetrization idea is from Ehrhard. But the
rest of the details needed to complete the proof seems most cleanly presented in the paper of Figiel, Lindenstrass and Milman, albeit
for the isoperimetric inequality on the sphere. These details appear to go through for the Gaussian case with minimal modification. If
there are gaps or mistakes, please let me know.
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The following two lemmas show why symmetrization improves a set and that the only sets that cannot
be improved by further symmetrizations are half-spaces. They justify the use of symmetrization as a tool
and their proofs form the heart of the proof of Theorem 1.

Lemma 5. Let A be closed and non-empty in Rm. Then S(!,v)[A] ∈M(A) for any symmetrization (!,v).

Lemma 6. Let A be a non-empty closed subset of Rm. Then there exist a finite sequence of symmetrizations under
which A transforms to a set B with r(B) < r(A).

Now we prove the main theorem assuming all the lemmas stated so far.

Proof of Theorem 1. Let A be any closed set with γm(A) > 0. By the third part of Lemma 3, there is some
B ∈ M[A] with r(B) ≤ r(X) for all X ∈ M[A]. If B is not a half-space, then by Lemma 6 we could get apply
a finite number of symmetrizations to get a set C with r(C) < r(B). Lemma 5 implies that C ∈ M[B]. But
since M[B] ⊆ M[A] this contradicts the minimality of r(B). Thus, B must be a half-space. This proves the
isoperimetric inequality for closed sets A. Recall that (2) is an equivalent form of the inequality and thus it
has been proved now for closed sets.

If A is any Borel set, by regularity of γm, for any δ > 0 there exists a compact sets K ⊆ A with γm(K) ≥
γm(A)−δ. Then

Φ−1(γm(Aε))≥Φ−1(γm(Kε)) (because K ⊆ A)

≥Φ−1(γm(K))+ ε (by the proved inequality (2) for closed sets)

≥Φ−1(γm(A)−δ)+ ε. (because Φ−1 is increasing)

Let δ ↓ 0 to get Φ−1(γm(Aε))≥Φ−1(γm(A))+ ε. !

2. PROOFS OF LEMMAS USED TO PROVE THE GAUSSIAN ISOPERIMETRIC INEQUALITY

Proof of Lemma 3. (1) Suppose d(A,B) < δ for some A,B ∈ C . If a half-space H contains A, then Hδ con-
tains B. Therefore r(B) ≤ r(A)+ δ. Reversing the roles of A and B we see that A → r(A) is in fact a
Lipschitz function on C .

(2) If d(A,B) < δ then Aδ ⊇ B and hence γm(Aδ)≥ γ(B). Hence, if d(Ak,A)→ 0, then γm(Aδ)≥ limsupγm(Ak)
as k → ∞. This holds for any δ and γm(Aδ)→ γm(A) as δ → 0. Therefore γm(Aδ) ≥ limsupk→∞ γm(Ak)
showing that γm is u.s.c. on C .

(3) Let r = inf{r(X) : X ∈ A}. Since Φ(r(X))≥ γm(A) > 0 for all X ∈M[A], it follows that r >−∞. If r = +∞,
then we may take B = A. Thus we assume that r is finite.

Let Bk ∈M[A] with rk := r(Bk) ↓ r. Then Bk ⊆ Huk(rk +1/k) for some unit vectors uk. By passing to
a subsequence we may assume that uk → u for some unit vector u. Since γm(Bk) = γm(A) > 0, there
is a finite number R0 such that B(0,R0) has a non-empty intersection with Bk for all k. By Lemma 8,
we can pass to a further subsequence and assume that Bk∩K → B∩K in Hausdorff metric for every
compact set K. Here B is a closed set.

By the second part, γm(B∩K) ≥ limsupγm(Bk ∩K) ≥ limsupγm(Bk)− γm(Kc). Since Bk ∈ M[A], by
taking arbitrarily large K we get γm(B)≥ γm(A).

Now fix K. For any δ > 0 we have B∩K ⊆ (Bk ∩K)δ for large enough k and hence γm((B∩K)ε)≤
liminfγm((Bk ∩K)δ+ε)≤ γm(Aε+δ) since each Bk ∈M[A]. Now let δ ↓ 0 to get γm((B∩K)ε)≤ γm(Aε) for
all ε > 0. Then let K increase to Rm and conclude that γm(Bε)≤ γm(Aε). Thus, B ∈M[A].

We claim that B⊆ Hu(r). For if not, then for some small enough δ > 0 and large enough compact
set K we must have (B∩K)∩ ∂Hu(r + δ) *= /0. But for large enough k we have Bk ∩K ⊆ Hu(r + δ/3)
and B∩K ⊆ (Bk ∩K)δ/3 which implies that B∩K ⊆ Hu(r +2δ/3), a contradiction.
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Putting everything together, we have found a set B ∈ M[A] and B ⊆ Hu(r). Thus r(B) = r and the
proof is complete. !

Proof of Lemma 4. Fix ! and v and write points of Rm as (t,x) with t ∈ ! and x ∈ !⊥. For any set A, let At =
A∩ (t + !⊥) for t ∈ !.

Suppose tk → t. If (tk,xk) ∈ A and (tk,xk)→ (t,x), then (t,x) ∈ A as A is closed. Therefore, At ⊇ limsupAtk , in
particular γm−1(At)≥ limsupγm−1(Atk). This implies at ≥ limsupatk .

Now let B := S!,v[A] and suppose that (tk,yk) ∈ B and (tk,yk) → (t,y). By definition of symmetrization,
〈yk,v〉 ≤ atk and hence 〈y,v〉 ≤ limsupatk ≤ at which implies that (t,y) ∈ B. Thus B is closed. !

Proof of Lemma 5. Fix !,v and let B = S(!,v)[A]. We need to prove two things.

(a) γm(B) = γm(A) and (b) γm(Bε)≤ γm(Aε) for each ε > 0.

The first assertion is easy. Use Fubini’s theorem to see that

γm(A) =
Z

R
γm−1[(tu+ !⊥)∩A]dγ1(t) =

Z

R
γm−1[(tu+ !⊥)∩B]dγ1(t) = γm(B).

The proof of (b) is non-trivial and it is the key step in the entire proof of Theorem 1. By Fubini’s theorem, it
suffices to show that γm−1[(Bε)t ]≤ γm−1[(Aε)t ] for all t ∈ !, where At := A∩ (t + !⊥) is the t-section of A.

Without loss of generality let ! = Re1 and v = e2. For each s ∈ R, then Bs = {(s,u2, . . . ,un) : u2 ≤ as} where
Φ(as) = γm−1(As). Let π denote the orthogonal projection from Rm onto !⊥ = span{e2, . . . ,en}.

Fix t ∈ R. Then (t,x) ∈ Bε if and only if there exists s with |s− t| ≤ ε and y ∈ Bs with |y− x| ≤ δs :=√
ε2− (s− t)2. This means

π[(Bε)t ] =
[

s:|s−t|<ε
(π[Bs])δs , π[(Aε)t ] =

[

s:|s−t|<ε
(π[As])δs .(1)

In Rn−1, π(Bs) is a half-space with the same γm−1 measure as π(As) (by definition of symmetrization). There-
fore, inductively assuming the the Gaussian isoperimetric inequality for lower dimensions (the ground case
m = 1 is checked in Exercise 2), we get γm−1[(π[Bs])δs ]≤ γm−1[(π[As])δs ] for each s. Therefore, using the second
set-identity in (1) we get γm−1[(π[Bs])δs ]≤ γm−1[π[(Aε)t ] for each s ∈ [t− ε, t + ε].

Now note that (π[Bs])δs = {(u2, . . .un) : u2 ≤ as +δs} are all half-spaces. For any two of them, one contains
the other. Hence, their union is an increasing union of a countable number of them. Therefore,

γm−1[π((Bε)t)] = sup
s:|s−t|≤ε

γm−1[(π[Bs])δs ]≤ γm−1[π[(Aε)t ].

Equivalently γm−1[(Bε)t ]≤ γm−1[(Aε)t ]. By Fubini’s theorem, this proves (b). !

Proof of Lemma 6. Since A is closed, the infimum in the definition of r(A) is a minimum. Let v be a unit
vector such that Hv(r)⊇ A with r = r(A). Without loss of generality we assume v = en. Let W = ren + e⊥n , the
boundary of the half-space H := Hen(r).

First pick any line !0 inside W and let A′ = S!0,en [A]. Since A is closed and not the whole half-space,
A′ is a closed proper subset of H. Further, if x ∈ A′ and y ∈ H has yi = xi for i ≤ n− 1 and yn < xn, then
y ∈ A′ too. Therefore, it is clear that there is a point p ∈ W and δ > 0 such that A′ ∩Qp(2δ) = /0 where
Qp(2δ) = p+(−2δ,2δ)n.

Now let !i = p+ ren +Rei for i = 1,2, . . . ,n−1. These are lines inside W , passing through p and parallel to
the co-ordinate directions.

Let A′′ = S!1,p1 [A
′]. For each t ∈ [−δ,δ] the section (t +!⊥1 )∩A′ is a subset of [(t +!⊥1 )∩(H \Qp(δ))]. Therefore,

there is some δ′ > 0 such that A′′ ∩ ([−δ,δ]×Rm−1) is contained in Hv(r−δ′).
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Now symmetrize w.r.t. (!2,v) and let A′′′ = S!,v[A′′]. For each t ∈ !2, the section A′′ ∩ (t + !⊥2 ) is a subset of
Hv(r−δ′). Therefore, there is some δ′′ > 0 such that A′′′ ⊆Hv(r−δ′′). Thus in (at most) three symmetrizations
we arrive at a set A′′′ with r(A′′′) < r(A). !

Solution to Exercise 2. For p ∈ (0,1) define Qp = Φ−1(1− p), the (1− p)-quantile. For x≤ Qp, define bp(x) by

the equation γ1[x,bp(x)] = p. Let αp denote the unique x such that bp(x) =−x. Differentiating p =
R bp(x)

x ϕ(t)dt,
we get ϕ(bp(x))b′p(x)−ϕ(x) = 0.

Fix p ∈ (0,1), ε > 0 and define h(x) = γ1[x− ε,bp(x)+ ε] and observe that

h′(x) = ϕ(bp(x)+ ε)b′p(x)−ϕ(x− ε) = ϕ(x)
{

ϕ(bp(x)+ ε)
ϕ(bp(x))

− ϕ(x− ε)
ϕ(x)

}
= ϕ(x)

{
ϕ(bp(x)+ ε)

ϕ(bp(x))
− ϕ(−x+ ε)

ϕ(−x)

}
.

Note that ϕ(u+ ε)/ϕ(u) = e−uε− 1
2 ε2 is decreasing in x. Hence, when x > αp(x) (which is equivalent to bp(x) >

−x), we have h′(x) < 0. Thus h(αp) > h(x) > h(Qp) for all x ∈ (αp,Qp).
Case of one closed interval: If A is an interval with γ1(x) = p, then it is of the form [x,bp(x)] for some x. We
may also assume that x≥ αp (otherwise replace A by−A). Thus, by the above deduction, γ(Aε) is minimized
when x = Qp.
Case of multiple closed intervals: We write A as I1) I2 . . .) Ik with I j = [x j,bp(x j)] with bp(xi−1) < xi for all i.
There are two reductions which improve our set in isoperimetric setting.

(1) Suppose that Ik and Ik−1 differ by less than 2ε, i.e., bp(xk−1)+ ε > xk− ε. In this case, if we move the
interval [xk,bp(xk)] to the left (i.e., decrease xk), then γ1(A) stays the same but γ1(Aε) decreases till xk

hits bp(xk−1). This results in a set with (k−1) intervals and better isoperimetric profile.

(2) Suppose that Ik−1 and Ik are separated by at least 2ε. Without loss of generality bp(xk) >−xk (other-
wise, replace Ik by−Ik, which would be even further to the right than Ik and the separation condition
continues to hold). Then, by the earlier deduction, as xk increases, γ1(A) stays the same but γ1(Aε)
decreases, till xk = Qpk .

Repeatedly applying these two reductions, we can reduce A to the interval [Qp,∞).
Case of an arbitrary closed set: Let A be closed with γ1(A) = p. For any small η > 0, the set Aη is the closure
of an open set, and hence it is a union of countably many disjoint closed intervals. At the cost of losing an
η probability, we drop all but finitely many intervals. This gives us a set B with the property that B ⊆ Aη

and p′ := γ1(B) ≥ p−η. By the already proved inequality, γ1(Bε) ≥ γ1[Qp′ − ε,∞). Of course Bε ⊆ Aη+ε and
therefore γ1(Aε)≥ γ1[Qp′ − ε,∞). Letting η ↓ 0 and noticing that p′ → p, we get γ1(Aε)≥ γ1[Qp− ε,∞). !

3. APPENDIX: HAUSDROFF METRIC

Let (X ,d) be a metric space and let CX denote the set of all non-empty closed subsets of X . The Hausdorff
distance between two closed sets A,B is defined by dH(A,B) = inf{r > 0 : Ar ⊇ B and Br ⊇ A} where Ar =
{x : d(x,A) ≤ r}. The value +∞ is allowed and (C ,d) is a metric space (if you are not comfortable with a
metric that takes infinite values, just use dH(A,B)∧1 which is a finite metric).

Exercise 7. Let (X ,d) be a compact metric space. Then (CX ,dH) is a compact metric space.

We shall work in Rm which is not compact.

Lemma 8. Let Ak be a sequence of closed non-empty sets in Rm. Assume that Ak ∩B(0,R0) .= /0 for all k for some R0.
Then, there exists a subsequence k j and a non-empty closed set X such that Ak j ∩K → X ∩K in Hausdorff metric for
every non-empty compact K ⊆ Rm.

Proof. For each j > R0, use Exercise 7 to see that Ak ∩B(0, j) has a subsequence that converges in Hausdorff
metric to some set Xj ⊆ B(0, j). Set X = ∪ jXj. Then it is easy to see that X is closed and the conclusions hold
(check!). !
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4. APPENDIX: GAP IN THE PROOF!

In lecture we realized that there is a gap in the proof that we gave for the isoperimetric inequality. It is
in the proof of Lemma 6. The given proof is correct in dimensions 3 and higher but not in dimension 2 as
there is only one line contained in the boundary of a half space in R2! We fix this below4.

Lemma 9. Let vk = (cosθk,sinθk) with θ0 = 0 and θk = π+θk−1
2 for k ≥ 1. Let !k = v⊥k and let Sk := S!k,−vk . Given a

closed set A⊆ R2, define A0 = S0[A] and Ak = Sk[Ak−1] for k ≥ 1.
(1) If x ∈ Ak then x+ tv0 + svk ∈ Ak for all t,s≥ 0.

(2) Let H = {(x,y) : y ≥ Φ−1(γ2(A))}. Then Ak converges to H on compacta in Hausdorff metric i.e., Ak ∩K →
H ∩K in Hausdorff metric for every compact set K.

Proof. (1) By definition of symmetrization, it is clear that if x ∈ Ak then x+ tvk ∈ Ak for t > 0. It remains
to prove for k ≥ 1 that if x ∈ Ak then x+ tv0 ∈ Ak. The case k = 0 is trivial.

Consider k = 1. By the γ1(A∩ (tv0 +!⊥1 )) is increasing in t (because of the case k = 0), which shows
that if x ∈ A1 then x+ tv0 ∈ A1. This completes the proof for k = 1.

Fix k ≥ 2 and let π denote the projection onto !⊥k and let Ak−1,t = Ak−1 ∩ (tv⊥k + !⊥k )] and Ak,t =
Ak∩(tv⊥k +!⊥k )] so that Ak,t is a half-line with γ1(Ak,t) = γ1(Ak−1,t). Observe that !k is the angle bisector
of vk and v0. Therefore, inductively assuming the lemma for k−1, we see that π[Ak−1,t+ε]⊇ π[Ak−1,t ]ε

(the ε-enlargement in !⊥ = R). Consequently, by the one-dimensional isoperimetric inequality we
deduce that π[Ak,t+ε] ⊇ π[Ak,t ]ε. Draw a picture to see that this precisely implies that if x ∈ Ak then
x+ tv0 ∈ Ak for t ≥ 0.

(2) If γ2(A) = 0 then Ak is empty for all k and the statement is valid. Hence assume γ2(A) > 0. By
properties of symmetrization, for every k we have γ2(Ak) = γ2(A) and γ2(Aε

k) ≤ γ2(Aε) for all ε > 0.
Also define the cone Ck = {sv0 + tvk : s, t ≥ 0} and C∞ = {(x,y) : y≥ 0}s.

Let R be large enough such that γ2(B0(R)c) < γ2(A). Then there exists xk ∈ Ak∩B0(R). Having fixed
ε > 0 and R > 0, it is clear that for large enough k and every x ∈ B0(R) we have ((x+Ck)∩B0(R))ε ⊇
(x+C∞)∩B0(R). Since Ck ⊆ C∞ we obviously have ((x+C∞)∩B0(R))ε ⊇ (x+Ck)∩B0(R).

!

4Proof is taken from Bogachev’s book, chapter 4
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